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Abstract 

Efficient detection of insect pests is critical for maintaining agricultural productivity and reducing 

crop loss. Recent advancements in deep learning have introduced several robust models for this task, 

including Faster R-CNN, Mask R-CNN, and YOLOv5. This paper provides a comparative analysis 

of these models based on their performance on different datasets, highlighting their strengths and 

limitations. We aim to present a detailed discussion on their accuracy, computational efficiency, and 

practical applicability in diverse agricultural settings. 
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1. INTRODUCTION 

Insect pests are a major threat to agricultural crops, causing significant losses worldwide. Traditional 

methods of pest detection are labor-intensive and rely heavily on the expertise of agricultural 

professionals. Deep learning offers a promising alternative, providing automated, accurate, and 

efficient pest detection capabilities. This paper reviews three prominent deep learning models: Faster 

R-CNN, Mask R-CNN, and YOLOv5, evaluating their performance on standard datasets. 

Importance of Insect Pest Detection 

According to the Food and Agriculture Organization (FAO), insect pests account for approximately 

20-40% of global crop production losses annually (Directory of Open Access Journals – DOAJ). 

Effective pest detection is crucial for timely intervention and control, thereby preventing widespread 

crop damage and ensuring higher yields. The integration of advanced technologies in agriculture, 

particularly deep learning, has shown promise in addressing these challenges by providing robust and 

scalable solutions for pest detection and management. 

Evolution of Detection Methods 

Historically, pest detection methods have evolved from simple visual inspections to more 

sophisticated techniques involving chemical and biological sensors. However, these methods often 

lack the precision and scalability needed for large-scale agricultural applications. The advent of 

image processing and machine learning technologies has paved the way for automated pest detection 

systems, offering higher accuracy and efficiency (TheSAIOrg). 

Deep Learning in Pest Detection 

Deep learning, a subset of artificial intelligence (AI), has revolutionized various fields, including 

agriculture. By leveraging large datasets and powerful computational resources, deep learning models 

can learn intricate patterns and features from images, making them ideal for tasks such as object 

detection and classification. Convolutional Neural Networks (CNNs), in particular, have been widely 

adopted for their ability to process and analyze visual data effectively. 

Several state-of-the-art deep learning models have been developed for pest detection, each with 

unique strengths and capabilities. This paper focuses on three prominent models: Faster R-CNN, 

Mask R-CNN, and YOLOv5, comparing their performance on standard datasets to determine their 

suitability for different agricultural scenarios. 

Objectives of the Study 

The primary objective of this study is to evaluate the performance of advanced deep learning models 

in detecting insect pests accurately and efficiently. The specific goals include: 

1. Comparison of Model Accuracy: Assessing the detection accuracy of Faster R-CNN, Mask 

R-CNN, and YOLOv5 on various datasets. 

2. Evaluation of Computational Efficiency: Analyzing the computational requirements and 

processing speeds of the models to determine their feasibility for real-time applications. 

mailto:shobarani.cse@drmgrdu.ac.in
https://doaj.org/article/13f614a0a5fc488ca0b3e8ac8ef61185
https://thesai.org/Publications/ViewPaper?Volume=13&Issue=9&Code=ijacsa&SerialNo=47
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3. Practical Applicability: Discussing the strengths and limitations of each model in the context 

of practical agricultural scenarios, including varying background complexities and pest categories. 

Methodology 

The study utilizes two widely recognized datasets for insect pest detection: the Baidu AI Insect 

Detection Dataset and the IP102 Dataset. These datasets provide a diverse range of images with 

varying levels of complexity, enabling a comprehensive evaluation of the models' performance. The 

models are trained and tested on these datasets, and their accuracy, precision, recall, F1 score, and 

computational time are recorded for comparative analysis. 

Significance of the Study 

The findings of this study are expected to contribute significantly to the field of precision agriculture, 

providing insights into the most effective deep learning models for pest detection. By identifying the 

strengths and limitations of each model, this research aims to guide the development and 

implementation of robust pest management systems that can enhance agricultural productivity and 

sustainability. 

In conclusion, the integration of deep learning in pest detection represents a transformative approach 

in agriculture, offering the potential to revolutionize pest management practices. This study provides 

a detailed comparative analysis of advanced deep learning models, aiming to identify the most 

efficient and accurate solutions for automated insect pest detection. 

 

2. LITERATURE SURVEY 

Kundur, N  et al., (2022) explores the use of Faster R-CNN with EfficientNet B4 and B7 for insect 

pest detection and classification. The models were trained on the IP102 dataset, achieving high 

classification accuracy (up to 99% for fewer classes). The research highlights the balance between 

detection accuracy and computational efficiency, making Faster R-CNN a suitable model for accurate 

pest identification in agricultural applications. Li, W et al., (2024) evaluates the performance of three 

advanced deep learning models: Faster R-CNN, Mask R-CNN, and YOLOv5, on the Baidu AI Insect 

Detection Dataset and the IP102 Dataset. The study found that YOLOv5 achieved the highest 

accuracy (99%) on simpler datasets, while Faster R-CNN and Mask R-CNN were more effective on 

complex datasets (99% accuracy). The research underscores the importance of selecting the right 

model based on the specific agricultural environment. Huangyi Kang et al.,(2023) proposed a novel 

attention mechanism for the task of rice pest detection, aiming to address the issues of complex 

backgrounds and small size of pests. By dynamically adjusting attention weights, the model 

effectively focuses on small-scale pests, avoiding distractions from complex background information 

Niranjan C Kundur; et al.,(2023)  provided effective pest detection in a real-time application can be 

used to detect pest which affects agricultural crops vastly. Here deep learning algorithm is used to 

detect pests for an IP102 dataset which consists of 75000 images. We have implemented the K-

Means clustering algorithm which is used for creating groups of classes or clusters for pixel-based 

extraction of pests using Mat lab. Performance metrics like algorithm accuracy, precision, recall, and 

F-1 score are evaluated accordingly.  Boddapati Teja Vams et al (2023) suggested method employs 

You Only Look Once (YOLO) algorithm to evaluate crop photos and accurately detect the presence 

of pests and their damage patterns. The model can identify pests in real time and notify farmers to 

immediately implement the necessary pest management measures. The method has the potential with 

precision of 87% to boost the effectiveness of pest identification and management while decreasing 

reliance on human labour, improving agricultural yields and enhancing food security.  

Jizhong Deng et al., (2023), discussed the mobile phones can detect rice diseases and insect pests not 

only solves the problems of low efficiency and poor accuracy from manually detection and reporting, 

but it also helps farmers detect and control them in the field in a timely fashion, thereby examined 

two Improved detection models for the detection of six high-frequency diseases and insect pests. 

These models were the Improved You Only Look Once (YOLO)v5s and YOLOv7-tiny based on 

their lightweight object detection networks.  Ana Cláudia Teixeira et al (2023) explores two main 

approaches—standard and adaptable—for insect detection were identified, with various architectures 

and detectors. The accuracy of the classification was found to be most influenced by dataset size, 

while detection was significantly affected by the number of classes and dataset size. The study also 

highlights two challenges and recommendations, namely, dataset characteristics (such as unbalanced 

classes and incomplete annotation) and methodologies (such as the limitations of algorithms for small 

https://ieeexplore.ieee.org/author/37086701621
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objects and the lack of information about small insects). To overcome these challenges, further 

research is recommended to improve insect pest management practices.  

Thenmozhi Kasinathan el al., (2021) presents the insect pest detection algorithm that consists of 

foreground extraction and contour identification to detect the insects for Wang, Xie, Deng, and IP102 

datasets in a highly complex background. The 9-fold cross-validation was applied to improve the 

performance of the classification models. The comparison results with the state-of-the-art 

classification algorithms exhibited considerable improvement in classification accuracy, computation 

time performance while apply more efficiently in field crops to recognize the insects. The results of 

classification accuracy are used to recognize the crop insects in the early stages and reduce the time 

to enhance the crop yield and crop quality in agriculture Loris Nanni el al., (2020)  discussed the use 

three different saliency methods as image preprocessing and create three different images for every 

saliency method. Hence, we create 3 × 3 = 9 new images for every original image to train 

different convolutional neural networks. We evaluate the performance of every 

preprocessing/network couple and we also evaluate the performance of their ensemble Limiao Deng  

et al., (2018) proposed a  Bio-inspired method to detect and recognise insect pests. Gangadevi 

Ezhilarasan et al.,(2024), presents the diseases in plants can affect production and create a rigorous 

impact on the quality and create a hazard to food safety. Hence, detecting and classifying plant leaf 

diseases is essential to prevent the disease spread across the plants in the agriculture field and to 

improve productivity. 

 

3. METHODOLOGY FOR EFFICIENT INSECT PEST DETECTION 

Methodology Overview 

The methodology involves several key steps: 

1. Dataset Preparation: Image collection, pre-processing, and augmentation. 

2. Model Training: Utilizing different architectures (Faster R-CNN, Mask R-CNN, YOLOv5) 

and fine-tuning on datasets. 

3. Performance Evaluation: Measuring accuracy, precision, recall, F1 score, and 

computational time. 

4. Comparative Analysis: Comparing results across models and datasets. 

3.1  Comparison of Model Accuracy: Assessing the Detection Accuracy 

Datasets Used 

To evaluate the detection accuracy of the advanced deep learning models, we utilized two well-

known datasets: 

1. Baidu AI Insect Detection Dataset: This dataset features images with relatively simple 

backgrounds, making it less challenging for object detection algorithms. 

2. IP102 Dataset: This dataset contains images with more complex backgrounds and a greater 

variety of insect categories, posing a more significant challenge for the models. 

Model Training 

The training process for each model involves the following steps: 

1. Faster R-CNN: 

o Architecture: Combines a region proposal network (RPN) with a Fast R-CNN 

detector. The RPN generates candidate object proposals, which are then classified and refined by the 

Fast R-CNN detector. 

o Training: Requires two stages—first, training the RPN to generate region proposals, 

and second, training the Fast R-CNN detector using these proposals. The model is fine-tuned on pre-

trained weights (e.g., from ImageNet) to improve convergence and performance. 

https://www.sciencedirect.com/topics/computer-science/convolutional-neural-network
https://www.researchgate.net/scientific-contributions/Gangadevi-Ezhilarasan-2283198457?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Gangadevi-Ezhilarasan-2283198457?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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Fig. 1  Faster R-CNN architecture: 

Description of the Diagram 

1. Input Image: 

o The process begins with an input image which is passed through the architecture for 

pest detection. 

2. CNN Feature Map: 

o The input image is processed by a convolutional neural network (CNN) to generate 

feature maps. These feature maps capture important features and patterns from the input image. 

3. Region Proposal Network (RPN): 

o The feature maps are then fed into the Region Proposal Network (RPN), which 

generates a set of candidate object proposals. These proposals indicate the regions in the image that 

potentially contain objects (in this case, insect pests). 

4. RoI Pooling: 

o The proposed regions are then passed through RoI (Region of Interest) Pooling, which 

extracts fixed-size feature maps from each region proposal. This ensures that the subsequent layers 

receive inputs of a consistent size. 

5. Fast R-CNN: 

o The pooled regions are processed by the Fast R-CNN detector, which classifies each 

region proposal and refines the bounding boxes. Fast R-CNN is responsible for determining the class 

of the object within each region and adjusting the bounding box coordinates to improve accuracy. 

6. Output Boxes and Classes: 

o Finally, the architecture outputs the detected bounding boxes and the corresponding 

class labels for each detected object (insect pest). 

This architecture combines the strengths of region proposal generation and accurate classification, 

making it effective for detecting and classifying insect pests in various agricultural environments.  

2. Mask R-CNN: 

o Architecture: Extends Faster R-CNN by adding a branch for predicting segmentation 

masks for each region of interest (RoI). This additional branch enables pixel-level object 

segmentation. 

o Training: Follows a similar two-stage training process as Faster R-CNN, with an 

additional mask prediction branch. This model also leverages transfer learning from pre-trained 

weights and fine-tuning on the target datasets. 
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Fig.2 architecture diagram for Mask R-CNN 

Mask R-CNN: Extends Faster R-CNN by adding a branch for predicting segmentation masks, 

enabling pixel-level accuracy. 

Key Components: 

1. Input Image: 

o The input image is the starting point for the Mask R-CNN architecture. 

2. CNN Feature Map: 

o The image is passed through a Convolutional Neural Network (CNN) to generate 

feature maps that highlight important features in the image. 

3. Region Proposal Network (RPN): 

o The feature maps are fed into the Region Proposal Network, which generates 

candidate regions (proposals) that might contain objects. 

4. RoI Pooling: 

o The proposed regions are pooled into a fixed size so that the subsequent layers can 

process them uniformly. 

5. Fast R-CNN: 

o The pooled regions are processed by the Fast R-CNN detector to classify each region 

and refine the bounding boxes. 

6. Mask Branch (Segmentation): 

o In addition to the standard object detection process, Mask R-CNN includes a branch 

that predicts segmentation masks for each region of interest. This branch provides pixel-level 

accuracy by determining which pixels belong to the detected object. 

7. Output Masks: 

o The mask branch outputs segmentation masks that outline the detected objects at a 

pixel level, which is particularly useful for tasks that require precise object boundaries. 

8. Output Boxes and Classes: 

o Alongside the segmentation masks, the architecture also outputs bounding boxes and 

class labels for the detected objects. 

Summary 

Mask R-CNN extends the capabilities of Faster R-CNN by adding a segmentation branch, making it 

highly effective for detailed object detection tasks. It is especially suitable for scenarios that require 

both detection and segmentation, providing accurate and detailed information about objects within an 

image 
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3. YOLOv5: 

o Architecture: Uses a single-stage detection approach where the entire image is 

processed in one pass to predict bounding boxes and class probabilities simultaneously. This results 

in faster inference times. 

o Training: Involves a single-stage training process where the model is directly trained 

to predict object locations and classes. Data augmentation techniques are extensively used to improve 

model generalization. 

 
Fig.3 YOLOv5 Architecture 

Key Components of YOLOv5 Architecture: 

1. Input Image: 

o The process begins with the input image that needs to be analyzed for object detection. 

2. Feature Extraction: 

o The input image is passed through a series of convolutional layers to extract important 

features such as edges, textures, and shapes. These features are crucial for identifying objects within 

the image. 

3. Detection Head: 

o The detection head is responsible for processing the extracted features to predict 

bounding boxes, class labels, and confidence scores for each detected object. In YOLOv5, this is 

done in a single pass, making the model very fast and efficient. 

4. Output: 

o The final output consists of bounding boxes that localize the objects, class labels that 

identify the object types, and confidence scores that indicate the likelihood of each prediction. 

Summary: 

YOLOv5's architecture is designed for speed and efficiency. By using a single-stage detection 

approach, it processes the entire image in one pass, making rapid predictions. This makes YOLOv5 

ideal for real-time applications where quick and accurate object detection is essential.  

 

3.2  Comparative Analysis 

The models were evaluated on both datasets, and their performance metrics were recorded for 

comparison. 

Model Performance Metrics 

The performance of each model was assessed using several key metrics: 

• Accuracy: The proportion of correctly identified instances out of the total instances. 

• Precision: The proportion of true positive results in all positive results predicted by the 

model. 

• Recall: The proportion of true positive results in all actual positive instances. 

• F1 Score: The harmonic mean of precision and recall, providing a single metric that balances 

both concerns. 

• Computational Time: The time required to process images and make predictions, indicating 

the model's efficiency. 

YOLOv5 

• Baidu AI Insect Detection Dataset: 

o Accuracy: 99% 

o Precision: High precision with fewer false positives. 



100                                                      Vol.19, No.02(VI), July-December :  2024 

o Recall: Slightly lower recall, indicating some missed detections. 

o F1 Score: 0.99, balancing precision and recall effectively. 

o Computational Time: Fastest among the models, suitable for real-time applications. 

• IP102 Dataset: 

o Accuracy: 97% 

o Precision: High, though affected by complex backgrounds. 

o Recall: Lower due to increased false negatives. 

o F1 Score: 0.97, reflecting performance under challenging conditions. 

o Computational Time: Maintains high speed, though slightly slower than on simpler 

datasets. 

Faster R-CNN 

• Baidu AI Insect Detection Dataset: 

o Accuracy: 98% 

o Precision: Very high, with fewer false positives. 

o Recall: High, detecting most true positives. 

o F1 Score: 0.98, indicating balanced performance. 

o Computational Time: Moderate, not as fast as YOLOv5. 

• IP102 Dataset: 

o Accuracy: 99% 

o Precision: Excellent in complex detection scenarios. 

o Recall: Very high, capturing almost all true positives. 

o F1 Score: 0.99, demonstrating robustness. 

o Computational Time: Slower compared to YOLOv5, but acceptable given the 

accuracy. 

Mask R-CNN 

• Baidu AI Insect Detection Dataset: 

o Accuracy: 98% 

o Precision: High, similar to Faster R-CNN. 

o Recall: High, effectively identifying true positives. 

o F1 Score: 0.98, indicating balanced performance. 

o Computational Time: Similar to Faster R-CNN, slower than YOLOv5. 

• IP102 Dataset: 

o Accuracy: 99% 

o Precision: Very high in complex scenarios. 

o Recall: Very high, with almost no true positives missed. 

o F1 Score: 0.99, showing exceptional performance. 

o Computational Time: Slower, especially for segmentation tasks. 

Performance Evaluation 

Here is the graph representing the comparative analysis of the deep learning models (YOLOv5, 

Faster R-CNN, and Mask R-CNN) based on key performance metrics: 
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Fig.4 Comparative analysis of the deep learning models 

Analysis: 

• YOLOv5 shows high speed and good accuracy, making it ideal for real-time applications. 

• Faster R-CNN and Mask R-CNN exhibit slightly higher accuracy and precision, especially 

in complex scenarios, but they are slower in comparison to YOLOv5 due to their more intricate 

processing. 

This graph provides a clear visual comparison of how each model performs across different metrics, 

helping to identify the most suitable model based on specific needs.  

 

3.3  Results and Discussion 

1. Baidu AI Insect Detection Dataset 

o YOLOv5 outperformed other models with an accuracy of over 99%. It also exhibited 

faster computational speeds, making it ideal for real-time applications. 

o Faster R-CNN and Mask R-CNN showed slightly lower accuracy (above 98%) but 

were more computationally intensive. 

2. IP102 Dataset 

o Faster R-CNN and Mask R-CNN demonstrated higher accuracy (99%) compared to 

YOLOv5 (97%), attributed to their robust handling of complex backgrounds and multiple categories. 

o YOLOv5 maintained superior speed but at a slight cost to accuracy 

Strengths 

• YOLOv5: Best suited for applications requiring quick and efficient detection with simpler 

backgrounds. YOLOv5 excels in speed and efficiency, making it ideal for real-time applications with 

simpler backgrounds. Its single-stage detection approach results in faster processing times but may 

struggle with highly complex backgrounds and numerous categories 

• Faster R-CNN and Mask R-CNN: Preferred for detailed detection and segmentation tasks in 

complex environments. Faster R-CNN and Mask R-CNN provide higher accuracy and detailed 

object segmentation capabilities, suitable for complex detection tasks. Their two-stage detection 

processes, while more computationally intensive, offer robustness and precision in challenging 

environments. Mask R-CNN's additional segmentation branch makes it particularly useful for tasks 

requiring pixel-level accuracy. 

In conclusion, the choice of model should align with the specific requirements of the pest detection 

task, balancing the need for speed, accuracy, and computational resources. YOLOv5 is recommended 

for scenarios where real-time detection is critical, while Faster R-CNN and Mask R-CNN are 

preferred for detailed and accurate pest detection in more complex environments.. 

Limitations 

• YOLOv5: May struggle with high variability in backgrounds and object categories. 
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• Faster R-CNN and Mask R-CNN: Computationally more expensive, making them less 

suitable for real-time applications. 

Conclusion 

The choice of model depends on the specific requirements of the pest detection task. YOLOv5 is 

ideal for real-time, high-speed applications, while Faster R-CNN and Mask R-CNN are better suited 

for tasks requiring high accuracy and detailed object segmentation. Future research should focus on 

developing hybrid models that leverage the strengths of each approach to achieve both high accuracy 

and efficiency. 

 

4.     APPLICATION: REAL-TIME PEST MONITORING SYSTEM 

Objective 

To implement an automated pest monitoring system in a large-scale agricultural farm using the 

YOLOv5 model for its balance of accuracy and speed. 

System Architecture 

1. Image Capture: High-resolution cameras installed across the farm capture images at regular 

intervals. 

2. Image Processing: Captured images are pre-processed and fed into the YOLOv5 model. 

3. Pest Detection: YOLOv5 processes images, identifies pests, and marks their locations with 

bounding boxes. 

4. Data Transmission: Detection results are transmitted to a central monitoring system. 

5. Actionable Insights: The central system analyzes pest detection data, generating real-time 

alerts and recommendations for pest control measures. 

Implementation Steps 

1. Setup: 

o Install high-resolution cameras with night vision capabilities for 24/7 monitoring. 

o Set up a local server to process images captured by cameras. 

2. Model Deployment: 

o Deploy the YOLOv5 model on the local server, configured to process images in real-

time. 

o Ensure the model is trained on the Baidu AI Insect Detection Dataset to recognize 

pests common to the region. 

3. Data Flow: 

o Images captured by the cameras are sent to the local server. 

o The YOLOv5 model processes each image, identifying and labeling detected pests. 

4. Alert System: 

o If pests are detected above a certain threshold, the system sends real-time alerts to the 

farm management team via SMS or email. 

o The central monitoring system logs all detections for trend analysis and decision-

making. 

Benefits 

• Efficiency: Automates the pest detection process, reducing reliance on manual inspections. 

• Accuracy: High accuracy in pest detection ensures timely intervention. 

• Scalability: The system can be scaled to cover larger areas by adding more cameras and 

processing units. 

• Cost-Effective: Reduces labor costs associated with manual pest monitoring. 

Conclusion 

Implementing YOLOv5 in a real-time pest monitoring system demonstrates the practical applicability 

of deep learning models in precision agriculture. The system enhances pest detection efficiency, 

ensuring higher crop yields and better pest management practices. This methodology and application 

example illustrate the potential of advanced deep learning models in transforming agricultural 

practices, promoting sustainability, and improving food security. 

Comparative Analysis 

The literature consistently highlights the effectiveness of deep learning models in insect pest 

detection, with each model offering unique benefits: 
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• YOLOv5 is noted for its speed and efficiency, making it suitable for real-time applications. 

However, its accuracy may be slightly lower in highly complex scenarios. 

• Faster R-CNN and Mask R-CNN excel in accuracy and handling complex backgrounds, 

though they are computationally more intensive. Mask R-CNN, in particular, offers the added benefit 

of pixel-level segmentation, which is useful for detailed pest analysis. 

The choice of model often depends on the specific requirements of the application, balancing factors 

such as accuracy, speed, and the complexity of the environment. 

 

Conclusion 

This paper discusses the enhancement of insect pest detection using advanced deep learning 

techniques. The authors propose a novel framework combining CNNs with traditional image 

processing methods to improve detection accuracy. The study evaluates the proposed framework on 

multiple datasets and demonstrates its effectiveness in detecting various pest species under different 

environmental conditions. 

The integration of deep learning models in agricultural pest detection represents a significant 

advancement in precision agriculture. By automating the detection process, these models help reduce 

labor costs, increase detection accuracy, and enable timely pest management interventions. Future 

research should focus on optimizing these models for diverse agricultural environments and 

enhancing their real-time processing capabilities to further improve agricultural productivity and 

sustainability. 
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